Massively Parallel Genetic Algorithms
نویسندگان
چکیده
Heuristic algorithms are usually employed to find an optimal solution to NP-Complete problems. Genetic algorithms are among such algorithms and they are search algorithms based on the mechanics of natural selection and genetics. Since genetic algorithms work with a set of candidate solutions, parallelisation based on the SIMD paradigm seems to be the natural way to obtain a speed up. In this approach, the population of strings is distributed among the processing elements. Each of the strings is then processed independently of the other. The performance gain for this approach comes from the parallel execution of the strings, and hence, it is heavily dependent on the population size. The approach is favoured for genetic algorithms’ applications where the parameter set for a particular run is well-known in advance, and where such applications require a big population size to solve the problem. DDAP fits nicely into the above requirements. The aim of the parallelisation is two-fold: the first one is to speedup the allocation process in DDAP which usually consists of thousands of documents and has to use a big population size, and second, it can be seen as an attempt to port the genetic algorithm’s processes into SIMD machines.
منابع مشابه
A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملMassively Parallel GAs for Protein Structure Prediction
Proteins play an important role in medicine, biology and chemistry. Very often the conformation of a given protein is of great interest. Genetic Algorithms have already been applied successfully in this eld. This paper examines the use of Massively Parallel Genetic Algorithms in combination with local search strategies and a simulated annealing approach to predict protein structures.
متن کاملThe Multidisciplinary Design Optimization of a Reentry Vehicle Using Parallel Genetic Algorithms
The purpose of this paper is to examine the multidisciplinary design optimization (MDO) of a reentry vehicle. In this paper, optimization of a RV based on, minimization of heat flux integral and minimization of axial force coefficient integral and maximization of static margin integral along reentry trajectory is carried out. The classic optimization methods are not applicable here due to the c...
متن کاملSelection in Massively Parallel Genetic Algorithms
The availability of massively parallel computers makes it possible to apply genetic algorithms to large populations and very complex applications. Among these applications are studies of natural evolution in the emerging eld of articial life, which place special demands on the genetic algorithm. In this paper, we characterize the di erence between panmictic and local selection/mating schemes in...
متن کاملMassively Parallel Genetic Algorithms
The genetic algorithm is an iterative random search technique for nonlinear or combi-natorial problems. In this contribution, rst the development from the classical genetic algorithm (GA) via the parallel genetic algorithm (PGA) to the massively parallel genetic algorithm (MPGA) is described. Then experimental results with an implementation of the MPGA on the array processor MasPar MP-1 are dis...
متن کاملHybrid algorithms for Job shop Scheduling Problem with Lot streaming and A Parallel Assembly Stage
In this paper, a Job shop scheduling problem with a parallel assembly stage and Lot Streaming (LS) is considered for the first time in both machining and assembly stages. Lot Streaming technique is a process of splitting jobs into smaller sub-jobs such that successive operations can be overlapped. Hence, to solve job shop scheduling problem with a parallel assembly stage and lot streaming, deci...
متن کامل